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Abstract
A constructive proof is given that certain problems in the statistical mechanics
of random copolymers are thermodynamically self-averaging. The proof relies
on the use of normal numbers, and potentially gives a method for calculating
expectations in the quenched averaged ensemble. In particular, we give a new
proof that adsorbing random copolymers are self-averaging.

PACS numbers: 82.35.Jk, 02.30.Lt, 36.20.Fz, 87.15.Cc, 02.10.De, 05.70.-a

1. Introduction

When a system has quenched randomness (Brout 1959) an important question arises regarding
self-averaging in the system. The idea is most easily understood by way of an example.
Consider a polymer, produced by a random copolymerization process of two comonomers A
and B. Different polymer molecules produced by the process will have different sequences of
A and B, and these sequences are produced by a random process. However, each molecule
(once it has been produced) has a definite and fixed sequence of comonomers. For a polymer
with n monomers and a sequence χ ≡ {χ1, χ2, . . . , χn}, where χi = 1 if the ith monomer is
anA and 0 otherwise, properties will usually depend on the particular sequence χ , and we can
write Pn(χ) for the corresponding value of property P . If we average over all sequences χ we
obtain the quenched average 〈Pn(χ)〉. Property P is said to be self-averaging if

lim
n→∞Pn(χ) = lim

n→∞〈Pn(χ)〉 (1.1)

for almost all χ . If P is the free energy the system is said to be thermodynamically self-
averaging. Note that self-averaging is not a trivial property of a model since examples of
non-self-averaging properties are known (Derrida and Hilhorst 1981, Sourlas 1987).

Several models in statistical mechanics have been proved to be thermodynamically self-
averaging, including random spin models with short-range (van Hemmen and Palmer 1982)
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and long-range interactions (van Enter and van Hemmen 1983), self-avoiding walk models
of polymer adsorption (Orlandini et al 1999) and localization (Martin et al 2000), a lattice
tree model of copolymer adsorption (You and Janse van Rensburg 2000) and some simplified
models of random self-interacting copolymers (Orlandini et al 2000, Janse van Rensburg et al
2001).

For these models we know, by an existence proof, that for almost all sequences of
monomers the free energy converges to the quenched average free energy as the number
of monomers goes to infinity, though nothing is known about the rate of convergence. It is a
curious fact that we do not know any single sequence of comonomers which has this property!
The aim of this paper is to construct examples of such sequences, based on normal numbers,
and at the same time to give a constructive proof of self-averaging in these models. We shall
focus on a particular model (adsorption of self-avoiding walks), but the approach can be applied
to a variety of other models.

2. Normal numbers

A number is said to be normal if every finite subsequence of digits of a given length in base
g occurs with uniform density. It is known that almost all numbers are normal (Borel 1909).
In base 2 the sequence of some 0 and 1 will be used as colours of vertices in a self-avoiding
walk model of copolymers.

We first give a brief review of normal numbers. For further details, see Hardy and Wright
(1938).

Definition 1. Consider a number, γ , written in base g, and with some 0 appended after the
digit to give it an infinite decimal expansion, if necessary. If the digit b occurs Nb times in the
firstN digits of γ and ifNb/N → ρ(b) asN → ∞, then we say that the digit b has frequency
ρ(b). A number is simply normal in base g if ρ(b) = 1/g for each of the g possible values of
b.

Definition 2. A number is normal in base g if every combination b1b2 . . . bk of digits occurs
with frequency 1/gk for every positive integer k.

Consider the number 2/3. Expanding this number in base 2 gives 0.101010, . . . , and so
it is simply normal, since ‘0’ and ‘1’ both occur with a frequency of 1/2. The sequence ‘11’
does not occur at all, and so 2/3 in base 2 is not normal. If we then rewrite 2/3 in base 4 we
get 0.222, . . . , and we see that it is no longer simply normal. Hence if a number is simply
normal when written in one base, it is not necessarily simply normal in another. Lemma 1
below shows that if a number γ is normal in base g, then it must be simply normal in base gm.

Perhaps the most well-known normal number is the Champernowne number
(Champernowne 1933), defined (in base 2) by

0 · 1, 10, 11, 100, 101, 110, 111, 1000, 1001, . . . . (2.1)

The only function of the commas is to separate the digits into easily recognizable groups, and
the definition of this number in an arbitrary base g is apparent. (Notice that this number has
different numerical values in different bases; however, our interest is not in its numerical value,
but in the sequence of digits it presents.) Generalizations of the Champernowne number have
also been studied: for example, if we define (in base 2)

Sr = 0 . . . 00, 0 . . . 001, 0 . . . 010, 0 . . . 011, . . . . . . , 1 . . . 11 (2.2)

where all 2r possible arrangements of r digits occur in ascending order, then the number

·S1, S2, S3, . . . , Sr , . . .
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is normal in base 2, and, if µSr is the sequence formed by repeating Sr µ times in sequence,
then

·µS1, µS2, µS3, . . . , µSr , . . .

is also normal, provided thatµ is a fixed positive integer. Other classes of normal numbers can
be generated by using theorems due to Copeland and Erdös (1946), and to Szüsz and Volkmann
(1994). For instance, if pn is the nth prime then the concatenation of the primes p1, p2, . . . is
normal (Copeland and Erdös 1946). Similarly (Szüsz and Volkmann 1994) the concatenation
of the pnth primes pp1 , pp2 , pp3 , . . . and the related number [pp1 ]2, [pp2 ]2, . . . are normal in
any base. (Note that these numbers have different numerical values in different bases. They
are recipes for writing down examples of normal numbers in different bases.)

The next lemma shows that a number normal in base g is simply normal in base gm, and
this will eventually be a critical point in studying the limiting free energy of a self-avoiding
walk coloured according to the digits of a normal number. The result can be obtained from a
more general theorem in Kuipers and Niederreiter (1974) but we give a short, simple proof for
completeness.

Lemma 1. If a number is normal in base g then it is simply normal in base gm for any positive
integer m.

Proof. Suppose that γ is not simply normal in base gm for some positive integer m. In base
gm γ is a sequence of digits from the set {B1, B2, . . . , Bgm}. If γ is not simply normal in base
gm then there is at least one digit, B1 say, such that either

(1) The limit limN→∞NB1/N = ρ(B1) exists and ρ(B1) > g−m, or
(2) the limit limN→∞NB1/N = ρ(B1) exists and ρ(B1) < g−m, or
(3) limN→∞NB1/N does not exist.

Consider these three possibilities in turn.

(1) This implies that the sequence of m digits b1b2 . . . bm corresponding to the digit B1 in
base gm occurs with frequency greater than g−m which is impossible since γ is normal in
base g.

(2) This implies that there is a digit, B2 say, such that

lim inf
N→∞

NB2/N > g−m. (2.3)

We show that this gives a contradiction. Place a comma between each of the digits
of γ and then replace each digit by its corresponding sequence of m digits in base g,
and denote the number obtained (in base g now) by γ2. There is a comma between
successive blocks of m digits in γ2 so that each such block corresponds to a single digit
in γ . A sequence of m digits, b1b2 . . . bm, corresponding to the digit B2 in base gm,
either occurs between a pair of commas or crosses one of them4. Hence the total number
of occurrences in γ2, nb1b2...bm , of the sequence of m digits b1b2 . . . bm corresponding
to the digit B2 is at least as large as the number of occurrences, NB2 , of B2 in γ .
Hence

lim inf
n→∞

nb1b2...bm

n
� lim sup

N→∞

NB2

N
� lim inf

N→∞
NB2

N
> g−m. (2.4)

This implies that the sequence b1b2 . . . bm occurs with too great a frequency, which con-
tradicts the fact that γ is normal in base g.

4 Consider, for example, the number γ = 0.132 written in base 4; the digit ‘3’ occurs only once. Writing this in
base 2 we have γ2 = 0.01, 11, 10 and we see that the sequence ‘11’ occurs three times.
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(3) For case 3 we have three possibilities. Either
(a) lim supN→∞NB1/N > lim infN→∞NB1/N � g−m or
(b) g−m � lim supN→∞NB1/N > lim infN→∞NB1/N or
(c) lim supN→∞NB1/N > g−m > lim infN→∞NB1/N .

Since nb1b2...bm/n � NB1/N , it follows that

lim sup
N→∞

NB1/N � ρ(b1b2 . . . bm) = g−m (2.5)

so that 3(a) and 3(c) are impossible. Condition 3(b) implies that there is a digit B2 satisfying

lim sup
N→∞

NB2/N > g−m (2.6)

and we can apply an argument essentially identical to that used for condition 2. This proves
the lemma. �

3. Adsorption of random linear copolymers

We now turn our attention to a self-avoiding walk model of random copolymer adsorption.
Consider the simple cubic lattice Z

3. We write (x, y, z) for the coordinates of a vertex of Z
3.

We shall consider a self-avoiding walk with n edges on Z
3, which starts at the origin and is

confined to the half-space z � 0. Such a walk is called a positive walk. We write (xi, yi, zi) for
the coordinates of the ith vertex, i = 0, 1, . . . , n, so that z0 = 0 and zi � 0 for all i > 0. The
zeroth vertex is uncoloured and the remaining vertices of the walk are coloured independently
and uniformly by a random variable belonging to a probability space Y . A sequence of colours
χ = (χ1, χ2, χ3, . . . , χn) can be sampled from the product space X = Y × Y × Y × · · · × Y .
We shall consider colourings by only two colours A and B, but this can easily be generalized
to cases with any finite number of colours. We shall be primarily concerned with the case
n → ∞, so that the sequences of colours are infinite. If colours are assigned to a walk of size
n, then only the first n colours in an infinite sequence are used.

A (product) measureµ can be defined on the spaceX, and ifX is interpreted as a probability
space, thenµ(X) = 1. LetX′ be that subspace ofXwhich contains all the sequences of colours
which are normal. Then it is also known thatµ(X′) = 1, since almost every sequence is normal
(Borel 1909).

Let cn(v|χ) be the number of positive walks with n edges, with vertices 1, 2, . . . , n
coloured χ1, χ2, χ3, . . . , χn ≡ χ , having v vertices coloured A in the surface z = 0. We
define the partition function

Zn(α|χ) =
∑
v

cn(v|χ)eαv (3.1)

and the reduced free energy

κn(α|χ) = n−1 logZn(α|χ). (3.2)

We define a loop to be a positive walk which satisfies the inequalities

0 = x0 < xi � xn 0 < i � n (3.3)

and the condition

0 = z0 = zn � zi 0 < i � n. (3.4)

We write ln(v|χ) for the number of loops with n edges and colouring χ , having v vertices
coloured A in the plane z = 0. Define the partition function

Ln(α|χ) =
∑
v

ln(v|χ)eαv. (3.5)
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Let chn(v|χ) be the number of n-edge self-avoiding walks with z0 = h, no vertices with negative
z-coordinate, colouring χ , and having v vertices coloured A in z = 0. Define

Z∗
n(α|χ) = max

h

∑
v

chn(v|χ)eαv. (3.6)

Orlandini et al (1999) proved the existence of the quenched average free energy

lim
n→∞〈κn(α|χ)〉 ≡ κ̄(α) (3.7)

where the angular brackets denote an average over colourings χ , and that

lim
n→∞〈n−1 logLn(α|χ)〉 = lim

n→∞〈n−1 logZ∗
n(α|χ)〉 = κ̄(α). (3.8)

Lemma 2. If χ0 is a number normal in base 2, and χ(1)χ(2) . . . χ(p) is the firstmp digits of
χ0, with each χ(i) having m digits, then

lim
p→∞p

−1
p∑
i=1

m−1 logLm(α|χ(i)) = 〈m−1 logLm(α|χ)〉 (3.9)

where the angular brackets denote an average over the possible colourings χ of length m.
Similarly,

lim
p→∞p

−1
p∑
i=1

m−1 logZ∗
m(α|χ(i)) = 〈m−1 logZ∗

m(α|χ)〉. (3.10)

Proof. Since χ0 is normal in base 2 it is simply normal in base 2m. Therefore each of the
possible colourings of length m will occur with frequency 2−m in the set of p colourings
χ(1), χ(2), . . . , χ(p), as p → ∞. �

We now turn to the main theorem of this paper.

Theorem 1. If χ0 is a normal number in base 2, then

lim
n→∞ n

−1 logZn(α|χ0) ≡ κ(α|χ0) (3.11)

exists for all α < ∞, and

κ(α|χ0) = κ̄(α). (3.12)

Proof. Fix α < ∞. For fixed m write n = mp + q where 0 � q < m. Divide the colouring
χ0 into p colourings of length m, χ(1), χ(2), . . . , χ(p) and a colouring of length q, χ(p+1). By
concatenating a set of p loops each withm edges and a loop with q edges, as in Orlandini et al
(1999), lemma 3.5, we have the inequality

Zn(α|χ0) �
[ p∏
i=1

Lm(α|χ(i))
]
Lq(α|χ(p+1)). (3.13)

Similarly, by a concatenation argument similar to that used in Orlandini et al (1999), lemma 3.6,
we obtain the upper bound

Zn(α|χ0) � Zm(α|χ(1))
[ p∏
i=2

Z∗
m(α|χ(i))

]
Z∗
q(α|χ(p+1)). (3.14)

Hence

1

n
logZn(α|χ0) � 1

p + q

m

p∑
i=1

m−1 logLm(α|χ(i)) +
1

n
logLq(α|χ(p+1)) (3.15)
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and

1

n
logZn(α|χ0) � 1

p + q

m

p∑
i=1

m−1 logZ∗
m(α|χ(i)) +

1

n
logZ∗

q(α|χ(p+1)) (3.16)

where we have made use of the fact that Zm(α|χ(1)) � Z∗
m(α|χ(1)). Letting p → ∞ with m

fixed, and using lemma 2, we see that

〈m−1 logLm(α|χ)〉 � lim inf
n→∞ n−1 logZn(α|χ0)

� lim sup
n→∞

n−1 logZn(α|χ0)

� 〈m−1 logZ∗
m(α|χ)〉. (3.17)

Letting m → ∞ and using the result of Orlandini et al (1999) in equation (3.8), we have

lim
n→∞ n

−1 logZn(α|χ0) = κ̄(α) (3.18)

whenever χ0 is normal in base 2. �

Corollary 1. Since almost all numbers are normal, the system is thermodynamically self-
averaging.

4. Discussion

The primary result of this paper is that any colouring corresponding to a number which is
normal in base 2 gives a limiting free energy which is equal to the limiting quenched average
free energy for a randomly coloured self-avoiding walk model of copolymer adsorption. This
result gives a constructive proof that this model of copolymer adsorption is thermodynamically
self-averaging. Previous proofs of self-averaging in this and in related models have been
existence proofs.

In principle this gives a means of calculating the quenched average free energy from
results for a single colouring, but the convergence to the limiting (infinite n) quenched average
free energy may be very slow. In figure 1 we show the running means of the digits (i.e. the
fraction of 1’s) of several numbers which are known to be normal in base 2 (Champernowne
1933, Copeland and Erdös 1946 and Szüsz and Volkmann 1994). It is evident that the rates of
convergence of the running means of all these numbers are slow and erratic. By comparison,
in figure 2 we plot the running mean of the digits of the normal number in base 2 constructed
from [ppn ]

2, where pn is the nth prime (see Szüsz and Volkmann (1994)). This shows more
rapid and less erratic convergence. These results demonstrate that care must be taken in the
selection of a normal number for the purposes of simulations. It is an open question which
normal numbers are most appropriate for any given model.

The proof of theorem 1 relies on deriving upper and lower bounds for the free energy
with a specified colouring, and then using a squeeze theorem. It is also directly applicable to a
model of linear polymer localization at an interface, and to directed versions of these models.
The model of localizing linear polymers has already been shown to be thermodynamically self-
averaging (Martin et al 2000), but our methods allow us to exhibit self-averaging sequences.
Again, any sequence which is normal in base 2 will give rise to self-averaging in the localization
model.

The same approach can be used for problems in which only a lower bound is known and
an ergodic theorem for super-additive processes (Kingman 1973, Akcoglu and Krengel 1981)
is applied (Orlandini et al 2000, You and Janse van Rensburg 2000, Janse van Rensburg et al
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Figure 1. The running mean plotted as a function of the number of digits in the sequence for (a) the
Champernowne number given in (2.1) (top curve), (b) the normal number in base 2 derived from
the sequence of primes p1, p2, . . . (centre curve) and (c) the number S1, S2, . . . , Sr , . . . (bottom
curve).
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Figure 2. The running mean plotted as a function of the number of digits in the sequence for the
base 2 number derived from the sequence [ppn ]2.
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2001). However, in these cases we have only been able to show that almost all numbers normal
in base 2 lead to self-averaging, so we are unable to exhibit a self-averaging sequence for these
cases.
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